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Executive Summary 

For coral reef managers to cost-effectively maintain and improve reef resilience, they need to 
understand temporal changes in the reef ecosystem at spatial scales fine enough to capture 
distinctions in the ecological processes affecting reefs. (Anthony et al. 2015). This monitoring 
challenge is relatively simple with fixed plot data, but in regionally-focused monitoring 
programs with spatially randomized sampling it can be very challenging to infer trends over any 
scale except that for which the survey was explicitly designed (e.g., region, island, sector; Smith 
et al. 2011). While useful for tracking regional/island scale responses, many ecological drivers 
and responses that may shed light on patterns of resilience occur at smaller spatial scales than 
those addressed in regional monitoring designs (McClanahan et al. 2012).  

For the National Coral Reef Monitoring Program (NCRMP), the problem is particularly acute. 
Constraining NCRMP’s ecological reporting within the traditional design poses three 
fundamental problems: (1) NCRMP random sampling programs are designed to be summarized 
across large spatial areas, and it is difficult to assess temporal patterns at any scale different 
from the explicit, a priori design scale (i.e., region/island/sector, Smith et al. 2011; Brainard et 
al. 2014). (2) Our defined sampling sectors were designed by expert opinion about likely patterns 
in reef ecology, not from benthic data explicitly; therefore, existing sectors may be ecologically 
heterogeneous. (3) As the traditional analysis has no built-in mechanism to account for 
methodological variation, we rarely compare distinct methods measuring the same parameters, 
and thereby limit the temporal range over which we attribute trends. 

To address these linked issues, we present a statistical technique based on contiguous clustering 
and mixed model analysis to downscale the NCRMP Pacific Reef Assessment and Monitoring 
Program data and apply it to a case study in the main Hawaiian Islands (Barrett 2011; Bates et al. 
2015).  

Our goals in this analysis are to (1) identify spatial sectors that are smaller than our current 
survey design scale while retaining robust, responsible statistical sampling, (2) ensure that our 
sectors are as ecologically homogenous as possible, and (3) extend our temporal coverage and 
sampling density by responsibly comparing similar metrics across multiple methods within the 
coherent statistical framework of a mixed-effects model.  

Specifically, we identify clusters based on NCRMP benthic cover data from four different survey 
methods, and then use mixed model analysis to assess both the optimal number of spatial sectors 
and the significance of long-term temporal change in hard coral cover in each newly created 
sector. Interesting patterns in Hawaiian percent cover data are revealed with significant long-
term trends that are obscured at the island level: 13 out of 63 sectors show long-term decline, and 
only 4 out of 63 show an increase in coral cover. 
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Introduction 

A Fundamental Monitoring Challenge for Resilience-Based-Management 
As reef managers increasingly focus on implementing resilience-based management, fine scale 
data on reef ecological processes are more important than ever (Mcleod et al. 2019). For coral 
reef managers to cost-effectively maintain and improve reef resilience, they need to understand 
temporal changes in the reef ecosystem at spatial scales fine enough to capture distinctions in the 
ecological processes affecting reefs. (Anthony et al. 2015).  

This monitoring challenge is relatively simple with fixed plot data, but in regionally-focused 
monitoring programs with spatially randomized sampling it can be very challenging to infer 
trends over any scale except that for which the survey was explicitly designed (e.g., region, 
island, sector; Smith et al. 2011). In addition, coral reefs and the drivers of reef ecological 
processes are notoriously patchy in space (Hamylton 2013). While broad-scale monitoring data 
are useful for tracking regional/island scale responses, many ecological drivers and responses 
that may shed light on patterns of resilience occur at smaller spatial scales than those addressed 
in regional monitoring designs (McClanahan et al. 2012). By reporting the ‘mean’ results of 
large, heterogeneous sectors, such monitoring programs run the risk of obscuring underlying 
ecological distinctions that may be key to the success of resilience-based management (Mcleod 
et al. 2019).  

For the National Coral Reef Monitoring Program (NCRMP), this challenge is particularly acute. 
Pacific NCRMP has an enormous sampling domain, spanning 49 islands spread across 6,000 
kilometers of ocean. In designing a program to efficiently sample this space, NCRMP’s 
designers explicitly committed to geographically comprehensive sampling, as they feared 
selected fixed sites would fail to be adequately representative (Brainard et al. 2014). When faced 
with real-world budgets and sampling logistics, this “wide-but-thin” strategy leads to relatively 
large reporting sectors and builds an explicit tension between geographic comprehensiveness and 
fine spatial reporting. 

Constraining ecological reporting within the traditional NCRMP design poses three fundamental 
problems: (1) NCRMP random sampling programs are designed to be summarized across large 
spatial areas, and it is difficult to assess temporal patterns at any scale different from the 
explicit, a priori design scale (i.e., region/island/sector, Smith et al. 2011; Brainard et al. 2014). 
(2) Our defined sampling sectors were designed by expert opinion about likely patterns in reef 
ecology, not from benthic data explicitly; therefore, existing sectors may be ecologically 
heterogeneous. (3) As the traditional analysis has no built-in mechanism to account for 
methodological variation, we rarely compare distinct methods measuring the same parameters, 
and thereby limit the temporal range over which we attribute trends. 

A Proposed Solution 
The solution we propose here is a version of statistical downscaling, which is less focused on the 
efficient allocation of sampling effort, like that provided by statistical survey design principles 
(e.g., Smith et al. 2011), and more on finding the optimal balance between statistical robustness 
and a fine spatial scale of reporting in an existent dataset (e.g., Benestad et al. 2008). 
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While a common endeavor in the field of climate modeling and meteorology (Benestad et al. 
2008), statistical downscaling is increasingly applied to ecological data (Wu et al. 2006; Azaele 
et al. 2012; Keil and Jetz 2014; Pourmokhtarian et al. 2016). Both ecological and climate 
modeling utilize a broad range of statistical techniques ranging from Empirical Orthogonal 
Functions (EOF), linear models, heirarchical mixed models, and a range of clustering techniques  
(Benestad et al. 2008). 

Here we apply spatially contiguous clustering and mixed model analysis to downscale the 
NCRMP Pacific Reef Assessment and Monitoring Program data and apply it to a case study in 
the main Hawaiian Islands (Barrett 2011; Bates et al. 2015). Our goals in this analysis are to (1) 
identify spatial sectors that are smaller than our current survey design scale while retaining 
robust, responsible statistical sampling, (2) ensure that our sectors are as ecologically 
homogenous as possible, and (3) extend our temporal coverage and sampling density by 
responsibly comparing similar metrics across multiple methods within the coherent statistical 
framework of a mixed-effects model.  

The contiguous clustering method we apply links neighboring sampling points in a graph 
representation, estimates similarity between linked points, and calculates a minimum spanning 
tree to find natural divisions between groups of neighbors (Assunção et al. 2006). We then apply 
mixed model analysis (Zuur et al. 2009) to the resulting groups to both define the optimal 
balance between fine spatial resolution and statistical robustness and to analyze the resulting 
grouped data. 
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Methods 
We detail the methods using the benthic data from the main Hawaiian Islands as a case study, but 
the methods are easily generalizable to other data types and other geographies. Throughout this 
methodological description, we will refer to our code-base, developed in R, available upon 
request of the authors (R Developement Core Team 2015). 

A. Methodological Walk-through 
The method we present here consists of four major sections: (1) data compilation, (2) 
hierarchical contiguous clustering, (3) assessment of appropriate cluster level, (4) mixed model 
assessment of trends. 

1. Data Compilation 
First, we summarize relevant data across methodologies and metrics. A key step in this process is 
to thoughtfully, with an understanding of the respective methods, compile data into an 
analyzable dataset detailed below. 

1A. Acquire and Compile Datasets, Linking Parameters across Methods.  
In the MHI case, we use 4 datasets of proportional benthic cover: Benthic Towed Diver Survey 
(TDS; 2005−2016), Line Point Intercept Surveys (LPI; 2006−2015), and photo-quadrat surveys 
analyzed using both Coral Point Count with Excel Extensions (CPCE; 2010−2013) and CoralNet 
(CN; 20015−2016). Across these distinct methods, we identified 6 benthic percent cover 
categories that could be responsibly compared: Hard Coral Cover, Soft Coral Cover, Crustose 
Coralline Algal Cover, Total Algal Cover (lumping Turf/Macro), Sand/Sediment, and all Other 
characterized benthos. Thereby we generated a set of 6,840 points of characterized benthos, 
spanning 7 islands and 11 years, 2005 through 2016 (Table 1). 

It is important to strike the appropriate balance between including datasets that will increase the 
spatial and temporal scope of one’s analysis, and limiting the analysis to those datasets that can 
be responsibly compared without greatly reducing the ecological utility of the combined dataset 
due to either the paucity or coarseness of the retained measures. Broader inclusion across 
methods will likely mean a coarser description of benthic status as one’s analysis will be limited 
by the coarsest of the available methods, such as TDS. In this methodological demonstration, we 
skewed toward inclusion and chose to provide wide temporal coverage and hence can only 
describe ecologically coarse categories of benthic cover (Table 1; Figure 1). 

1B. Divide Compiled Dataset into Cluster Set and Analysis Set 
We divide the data into (1) the Cluster Set, i.e., the data we will use to define contiguous, small, 
homogenous, statistically robust clusters, and (2) the Analysis Set, i.e., the data we will analyze 
for temporal trends using the spatial grouping of the generated clusters.  

Here, the Cluster Set consists of all spatial points sampled from 2005–2015, excluding any data 
after the coral bleaching event of 2015, to reduce temporal heterogeneity within the clusters. The 
Analysis Set, however, consists of all data, including the bleaching impacted periods. 
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Table 1. Descriptive Summary of Datasets by Method. 

Benthic Cover 
Assessment Method Description 

Years Available 
Total 

Surveyed 
Sites 

Towed Diver Benthic 
Survey (TDS) 

Coarse benthic description from 
~200 m segments of reef. 

2005, 2006, 2008, 
2010, 2016 

5,210 

Line Point Intercept 
(LPI) 

Small set of fixed site data 
transects, with cover assessed a 
specific points (by diver). 

2006, 2008, 2010, 
2014, 2015 

186 

Photo-quadrats – 
Annotated using 
Coral Point Count 
Excel Extensions 
(CPCE) 

Spatially random sites, with 30 
photos per site. Human annotation 
at randomized points on photo 
using CPCE software. 

2010, 2012, 2013 

792 

Photo-quadrats – 
Annotated using 
CoralNet 

Spatially random sites, with 30 
photos per site. Human annotation 
at randomized points on photo 
using CoralNet software. 

2015, 2016 

652 

 

Figure 1: Baseline data example—Lanaʻi. Map of existing survey data Lanaʻi, (left). Sector 
scale percentage hard coral cover, by year and collection method (right). 

2. Hierarchical Contiguous Clustering 
For each island, we ran a set of methods to generate hierarchical contiguous clusters that are both 
spatially contiguous and as ecologically homogenous as possible.  
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To perform the clustering, we first convert points to polygons using Voronoi tessellation (2A), 
define a neighbor-joining network and assign branch lengths based on ecological distance across 
six benthic cover categories (2B), and then prune the network into a minimum-spanning tree 
(2C) to set up for evaluating the quality of defined clusters (Section 3). 

2A. Points to Polygons: Voronoi Tessellation. 
One of the major challenges presented by the contiguous clustering of point data is determining 
which data are “contiguous” to which. There are multiple approaches one could use to translate 
point data into data covering spatial areas, including gridding or multiple versions of 
interpolation (e.g., kriging). As each of those methods require an a priori assessment of the 
proper spatial scale over which to judge heterogeneity (i.e., grid size), we instead opted to 
convert our point data into polygon data using Voronoi tessellation. 

Voronoi tessellation translates a set of points into the respective polygons that describe a nearest-
neighbor “watershed” around each point, returning a polygon that represents the area in which 
the corresponding point is the geographically closest data point available. Points are spatially 
contiguous if their respective Voronoi polygons share an edge. 

 

Figure 2: Voronoi tessellation. (A) Tessellation of benthic points cut by rectangular 
bounding box. (B) Tessellated polygons cut with bathymetry (0–100 fathoms). 

However, in the real coral reef ecosystem, geographically proximate points may or may not be 
ecologically contiguous because land or deep water can easily come between them. Therefore, 
we cut the polygons generated by Voronoi tessellation with another polygon describing possible 
coral reef habitat. This clipping polygon is bounded by the coastline and the 100 fathom 
boundary, and its intersection with the Voronoi polygons returns polygons clipped to generate 
more ecologically reasonable proxies for neighboring points (Figure 2, Figure 3).  
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All analyses in this section were performed in R, using the packages sp, for generating 
SpatialPointsDataFrames, and deldir, for generating the Voronoi tessellation (Pebesma and 
Bivand 2005; Turner 2016). 

 

Figure 3: Voronoi tessellation, Lanaʻi. 

2B. Polygons to “Neighbor List” Network 
We reformat the polygon structure into a network representation, with the nodes in the network 
representing each polygon, edges in the network connecting neighboring polygons, and edge 
weight (length) representing ecological distance as calculated by a multi-variate dissimilarity 
between the benthic composition of neighboring polygons (Figure 3, Figure 4). 

Using the function poly2nb in the spdep package in R, we first generate a “neighbor list”, a 
network representation of all polygon neighbor relationships, i.e., a network of the Voronoi 
polygons that share edges (Bivand et al. 2005). Then we scale the relationships in this network 
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by ecological dissimilarity, essentially adding branch lengths that correspond to how different 
one polygon’s benthic composition is from its neighbors. In our analytical code, we provide a 
range of distance/dissimilarity options available in the R package vegan, and the spdep functions 
nbcosts and nb2listw to generate the dissimilarity measures and apply them to the neighbor list, 
respectively (Dixon 2003).  

The code is written to allow the user to choose a dissimilarity metric from among Euclidean 
distance, Bray-Curtis dissimilarity, Gower dissimilarity, and two different metrics of 
compositional dissimilarity. In this methodological example, we used the simple Euclidean 
distance among scaled metrics of percent cover as a robust default, but some sectors may be 
sensitive to this choice of dissimilarity metric. 

2C. “Neighbor List” Network to Minimum Spanning Tree 
Using neighbor network with edge weights proportional to ecological similarity, we can 
algorithmically identify the minimum spanning tree that represents the shortest possible path 
through the neighbor network, which connects all vertices. This minimum spanning tree stands 
as a single representation of hierarchical sets of observable contiguous clusters, that is, groups of 
polygons that are very ecologically similar, separated by their more ecologically distinct 
neighbors with longer branch lengths. By identifying the longest branch lengths in the minimum 
spanning tree, we can successively split the tree into more, increasingly similar subgroups 
(Figure 4, Figure 5), which are not only ecologically similar but also spatially contiguous. 

 

Figure 4: Contiguous clusters from 'cuts' in a minimum spanning tree Lanaʻi. Spatially 
contiguous clusters around Lanaʻi (left) resulting from: Minimum spanning tree of 
benthic ecological dissimilarity, with 10 'cut' branches, returning 11 contiguous clusters 
(right). 
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3. Select the Appropriate Number of Clusters 
With the generation of a minimum spanning tree, we have a data structure that represents a 
hierarchically nested set of clusters, but we do not yet know the appropriate number of clusters. 
To assess the appropriate number of clusters to generate, we will primarily balance the 
number/size of sectors against the statistical performance of the cluster set, as our other goals are 
inherently dealt with in the methodological approach.  

For clarity, we return to our stated goals: clusters that are (1) small but statistically robust, (2) 
ecologically homogeneous, and (3) responsibly mix disparate methods. Given any level of 
clustering, the contiguous clustering method described above maintains ecological homogeneity 
of clusters, and hierarchical mixed modelling can account both for distinct survey methods and 
stratification in the sampling design (e.g., depth strata). With homogeneity and mixed methods 
inherently dealt with, the balance between small size and statistical robustness will determine our 
level of clustering. 

We also define a minimum cluster standard by sample size (in our case, N ≥ 30 points) and split 
the dataset into clusters by “cutting” the longest uncut branch in the minimum spanning tree that 
generates large enough clusters to include 30 sampling points. The choice of this minimum 
standard could arguably be pressed in one of two directions. One could expand this minimum to 
require that any identified cluster meet a larger set of characteristics of statistical quality, 
including random spatial distribution, balance across time and strata, etc. Alternatively, we could 
reduce this standard to allow for “sacrificial” clusters i.e., to identify areas that are poorly 
sampled, and exclude these data from the analysis of more robust spatial clusters at the stage of 
mixed model analysis. 

The cluster set is split into 2 clusters, then 3, then 4, and so on. For each level of clustering 
generated, we then evaluate the features and statistical performance of four quality metrics: (1) 
model performance for a temporal hierarchical mixed model (model AIC for assessing long-term 
temporal trends), (2) mean cluster spatial statistical power (detectable effect size in a spatial t-
test), (3) cluster sample size (N, mean number of samples per cluster), and (4) cluster spatial size 
(mean geographical distance among cluster centroids in km; Figure 5). 
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Figure 5: Successive grouping of spatial clusters Lanaʻi. 

The mixed model performance measure (quality metric #1, AIC; Figure 6A, C) has the greatest 
impact on our choice of cluster level, but the other metrics are useful for context. Following the 
patterns shown in Figure 6, we can follow the logic that leads us to a chosen level of clustering.  

Figure 6A shows the balance between two measures of statistical performance. We rely most on 
the AIC of a hierarchical mixed model defined using lmer in the lme4 package. The Gaussian 
fixed effects model is defined with Coral Cover as a function of Cluster Identity, Date, and their 
interaction (i.e., Coral_Cover ~ Cluster + Date + Cluster × Date), using random effects for Depth 
Strata and Method. We evaluate and plot each models’ Akaike Information Criterion for each 
level of clustering. 
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We also calculate a measure of spatial statistical power for each cluster, i.e., the percentage 
effect size at which we have an 80% chance of detecting significant shift in the mean between 
clusters at a significance level p = 0.05 using a one-sample T Test. We then plot the mean and 
standard error of that metric. 

Figure 6A and C show that AIC improves rapidly when moving from 1 cut to 3 (i.e., 2 to 4 
clusters), while effect size is unchanged. Both AIC and effect size get worse in moving from 3 
cuts to 8 (4 to 9 clusters), but we reach the best AIC at 10 cuts (11 clusters). 

We can see in Figure 6B that as the number of clusters increases, clusters get smaller both in size 
and in number of points sampled. This linear trend provides little in the way of inflection points 
with which we can define a non-arbitrary optimum but is useful for guiding intuition. 

Figure 6D plots the distance between a given cluster-level’s position and the ideal in terms of 
downscaled sector size and sample size (N) measured from the points shown in Figure 6B (i.e., 
the ideal would be tiny clusters with high N, marked by “*” in Figure 6B). Assuming an equal 
weight between the span of spatial cluster size and the span of cluster sample size (N) across the 
dataset, this plot can highlight tradeoffs. For example, in the Lanaʻi case shown, the chosen 
cluster level (10, green circle) is already trading off raw number of samples per cluster to get to 
smaller clusters. 

Overall, Figure 6 suggests that either 3 or 10 cuts would be a reasonable choice, but 10 is 
arguably better, while more than 10 erodes performance on all metrics up until 14, where the 
algorithm apparently failed to find branches to cut that meet our minimum standard of a 
minimum N of 30 per cluster. 
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Figure 6: Identifying the appropriate level of clustering. (A) Temporal model performance 
(AIC) vs. spatial statistical power (effect size), (B) cluster size vs. cluster sampling, (C) 
univariate plot of mixed model AIC, (D) scaled distance to 'ideal' size/sampling balance. 
Green circles indicate selected clustering level, * indicates ideal balance between 
desirable characteristics. 

4. Mixed Model Analysis of Trends 
Given a chosen level of clustering and the spatial polygons, we can define spatial sectors with 
which to run our analysis (i.e., Figure 4A) and apply hierarchical mixed models to evaluate long-
term trends.  
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Hierarchical mixed models provide many tools to allow us to responsibly address the kinds of 
issues that will arise when treating data outside the strict framework in which they were 
designed. However, these methods are not magic, and moving forward with a skeptical eye 
toward deviations likely to generate spurious conclusions is critical.  

B. Strategies to Statistically Address Known Issues 
1. Non-Random Spatial Sampling 
By using (new) smaller sectors our existing dataset may not be defensible as spatially random. 
This is especially risky when a new sector spans a boundary between two design sectors, as each 
design sector is likely to have different sampling allocations, and therefore non-uniform 
sampling effort.  

We can assess the empirical importance of this theoretical issue by statistically testing for spatial 
non-randomness in our sampled datasets and assessing if non-homogeneous sampling is a major 
hurdle. 

To demonstrate this test, we applied a metric of spatial randomness that assesses patterns of 
clustering vs. over-dispersion in relation to a random (Poisson) process. Specifically, using the 
spatstat package in R (Baddeley and Turner 2005), we applied the variance−stabilized Ripley’s 
K-function (a.k.a. Besag's transformation) to data at Lanaʻi grouped according to our traditional 
design sectors and to the same data grouped with the recommended 11 downscaled clusters 
(Bivand et al. 2013).  

2. Data That Violate Assumptions: Non-normality, Over-Dispersion, Zero-Inflation 
In any statistical modeling exercise, it is important to specify the underlying distribution from 
which your sample is drawn to ensure robust model fit and to avoid error. In our traditional 
statistical sampling design, we frequently apply Gaussian assumptions to fit our data as a robust 
default (Smith et al. 2011). However, with the proliferation of statistical tools associated with the 
software package R, it is increasingly simple to both test for normality and model non-normal 
data using mixed model analyses. Specifically, the package DHARMa allows for easy tests of 
non-normality of errors, zero-inflation, and over-dispersion, and with each deviation from 
assumptions we can modify a mixed model to account for these issues using the packages lme4, 
nlme, or glmmTMB (Bates et al. 2015; Brooks et al. 2017; Hartig 2018; Pinheiro et al. 2018). 

3. Spatial Non-Independence: Autocorrelation 
In addition to spatial non-randomness, means of data sampled too closely together risk violating 
the assumption of independent samples and can tend to both skew results and over-state 
statistical power. Autocorrelation is an issue in both space and time; however, space is the larger 
concern as our sampling events are generally at least a year apart, and therefore less likely to 
violate the assumption of temporal independence. 

There are multiple means of managing spatial autocorrelation in existing data. One method 
would be to calculate stratified means over a grid, with a grid scale larger than that of expected 
(or calculated) autocorrelation. In the case of Hawaiian reef data, the Hawai’i Monitoring and 
Reporting Collaborative (HIMARC) project has shown auto-correlated patterns in the benthos up 
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to approximately 250 m (Mary Donovan, HIMARC, pers. comm.). In this case, we would apply 
a grid of 300m or larger. 

The mixed model package nlme allows the user to specify autocorrelation structures that will 
account for the potential violation of the assumption of independence in the model, down 
weighting closely-packed sampling and correcting the calculation of model power. 

4. Unbalanced Sampling across Time, Methods and Stratification Variables 
Whether in traditional design sampling or in the novel method proposed, the user needs to be 
skeptical about the effects of unbalanced sampling across time periods, stratification variables 
(i.e., depth), and distinct methods (if applicable). Sectors with strong correlations between time, 
method, and strata can generate spurious results. While there is no “silver bullet” to apply in this 
case, the user should apply minimum standards of temporal coverage within sectors and be wary 
of results that appear driven by shifts in stratification or methods that may outstrip the mixed 
model framework’s ability to account for them. We can reasonably choose to set these more 
stringent minimum quality thresholds either at the clustering stage or at the mixed model analysis 
stage (see discussion of “sacrificial clusters” in Section 2C above) 

C. Demonstrative Model Applied Here 
In the demonstrative model, we have not strictly controlled for all of the issues raised above, and 
therefore all results should be interpreted as a “proof of concept,” not a well-supported 
presentation of ecological trends. 

Similar to the models with which we evaluated cluster-level AIC, we apply a simple, long-term 
linear slope analysis to the hard coral cover in each defined sector, accounting for method and 
depth-strata as random effects. Again, we use hierarchical mixed models defined with lmer in the 
lme4 package. The Gaussian fixed effects model is defined as CoralCover ~ ClusterID*Date, 
using random effects for depth strata and method (Bates et al. 2015). 

By using the package emmeans, we can determine a slope estimate of hard coral cover change 
over the 11 years of the survey by evaluating the estimated marginal means of the interaction 
between date and clusterID (Lenth et al. 2019). We record as significant and display the slope of 
all clustered sectors in which both lower and upper confidence limits share a sign, i.e., do not 
span zero. Cluster by cluster results are shown below in the results section. 
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Results 

We repeated the above analysis for each of the main Hawaiian Islands (except Kahoʻolawe). In 
each island, at least one sector showed significant long-term trends, very few of which were 
apparent from the sector-scale comparison. Again, these results stand to demonstrate the 
potential of the proposed method, have not met the standard of thorough statistical vetting, and 
should not be interpreted as robust trends. 

Regional Pattern: Significant Smaller-Scale differences, Skew toward Decline. 
From a regional perspective, we segmented the data into 63 spatial sectors across 7 islands. Of 
those 63 sectors, 13 (20.6%) showed significant long-term trends of declining coral cover over 
the 11-year span of analysis, 4 (6.3%) showed significant increasing trends, and the remaining 46 
(73.0%) showed no significant trend. Among sectors showing a significant trend, declining 
sectors are significantly more common than increasing sectors (13:4 sectors; 76%:24% of 
sectors; binomial glm: z = 2.06, p = 0.0393).  

Lanaʻi: Trend Results 
We divided Lanaʻi into 11 sectors, with 1 (#1 NE) showing a significant long-term decline, and 
two others (#5 and #9–SE, SW) showing significant long-term increases (Figure 7). For the 
island-wide baseline, see Figure 1. 

 

Figure 7: Clustered survey data, Lanaʻi. 

Design vs. Down Sampling: Assessment of Spatially Random Sampling, Lanaʻi 
To gauge uncertainties about imposing spatially non-random sampling through downscaling, we 
applied Ripley’s K (variance stabilized), a metric of spatial homogeneity to our data from Lanaʻi. 
These data were grouped both by the two traditional design sectors there and by the 11 
recommended downscaled sectors. Empirically testing the issue shows that the data grouped by 
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downscaled sectors do not present greater non-random spatial patterns by the K-function than the 
traditional sectors, at least in this case (Figure 8). While the traditional, larger sectors (red) show 
rapid and persistent patterns of spatial clumping, the smaller sectors (green) appear to show 
lower deviation from the random null model (blue).  

 

Figure 8: Spatial non-randomness of sampling data grouped by traditional design 
sectors (red), downscaled sectors (green), or random null model (blue). 

Hawaiʻi Island: Trend Results 
Baseline, sector-scale data from Hawaiʻi show temporal coverage from 2006–2016, with no 
apparent sector-level trends (Figure 9).  

We divided Hawaiʻi into 10 sectors; 1 (#5—Hamakua coast) shows a significant long-term 
increase. However, in 2016 only TDS data were available and there is some potential for 
methodological artefact that should be further explored. Two sectors (#4—Kona and #10—SE) 
show significant long-term decreases, but #10 was only sampled in 2006 and 2008, so we may 
question the biological robustness of this statistical result. However, sector #4 (Kona) is well 
sampled and shows a significant decline from a mean of 39.9% (±2.1% se) in 2010 to 26.2% 
(±1.2% se) in 2016, for a 34% reduction in cover over 7 years. 
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Figure 9: Baseline benthic data, sector-scale, Hawaiʻi. 

Figure 10: Clustered survey data, Hawaiʻi Island. 

Maui: Trend Results 
Baseline, sector-scale data from Maui show an island divided into seven sub-island sectors in our 
NCRMP design, a relatively high number (Figure 11). Unique in our main Hawaiian Islands 
design, these seven roughly map into similar sectors as the eight we identified through 
downscaling. 
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We divided Maui into 8 sectors, none of which shows increasing coral cover. Three sectors 
(#1—N. Kahului, #6—Hana and #8—S. Maui) show significant long-term decreases, but #8 is 
lightly sampled so we may question the biological robustness of this statistical result. There are 
no data from Sector #6 after 2013, and only light sampling that year. However, N. Kahului, 
sector #1, is well sampled and shows a significant decline (Figure 12). Each of these patterns is 
also apparent in the traditional NCRMP sector-level data (Figure 11). 

 

 

Figure 11: Baseline benthic data, sector-scale, Maui. 

Figure 12: Clustered survey data, Maui. 
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Molokaʻi: Trend Results 
Baseline, sector-scale data from Molokaʻi show temporal coverage from 2006–2016, with low 
means in 2006 and 2008 and high in 2010, due to spatially restricted sampling. (Figure 13).  

We divided Molokaʻi into 9 sectors, with no sector showing increasing coral cover. Two sectors 
show significant long-term decreases (#5 and #6—both SE, an area associated with sediment 
flow) (Figure 14). 

 

 

Figure 13: Baseline benthic cover survey data, Molokaʻi. 

Figure 14: Clustered survey data, Molokaʻi. 
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Oʻahu: Trend Results 
Baseline, island-scale data from Oʻahu show temporal coverage from 2006–2016 with no 
apparent trends. (Figure 15).  

We divided Oʻahu into 9 sectors, with one sector (#1—Windward) showing increasing coral 
cover. Three sectors (#3—S. Oʻahu, #7—Kaena Pt, and #8—Mokulēʻia) show significant long-
term decreases (Figure 16). 

 

 

Figure 15: Baseline benthic cover survey data, Oʻahu. 

Figure 16: Clustered survey data, Oʻahu. 
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Kauaʻi: Trend Results 
Baseline, sector-scale data from Kauaʻi show temporal coverage from 2006–2016, with one 
apparent decline in the spatially broad KAU_NAPALI sector. (Figure 17). We divided Kauaʻi 
into 10 sectors, with no sectors showing increased coral cover. One sector (#3—Miloliʻi) shows 
a significant long-term decrease. Sector #3 overlaps with KAU_NAPALI, but localizes the 
decline in a much more spatially constrained area than does the original sector (KAU_NAPALI; 
Figure 18). 

Figure 17: Baseline benthic cover survey data, Kauaʻi. 

 

 

Figure 18: Clustered survey data, Kauaʻi.  
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Niʻihau: Trend Results 
Baseline, sector-scale data from Niʻihau show temporal coverage from 2006–2016, with no 
apparent trends. (Figure 19). We divided Niʻihau into 6 sectors, with no sectors showing 
increased coral cover. One sector (#1—NE) shows a significant long-term decrease (Figure 20). 

 

 

Figure 19: Baseline benthic cover survey data, Niʻihau. 

Figure 20: Clustered survey data, Niʻihau.  
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Discussion 

Highlighting Finer Scale Trends  
The downscaling methodology presented shows potential for re-clustering existing data  into 
ecologically meaningful clusters at a fine spatial scale that remains statistically robust.  

In six of the seven examples we explored in the main Hawaiian Islands, the downscaled sector 
subsets revealed statistically significant sector-level trends that were obscured in the traditional 
design’s sector-level focus. The seventh, Maui, is the rare island in which our sector design 
roughly matches our “statistically optimal” sizing followed in our downscaling methodology.  
Given the spatial variation in both ecological drivers and population responses, this 
heterogeneity in trends should not surprise us. However, as the distinction among “places faring 
poorly” and “places faring well” can greatly inform inference about the drivers of resilience, our 
results highlight the importance of this methodological pursuit (Anthony et al. 2015). 

In addition to revealing long-term trends, we also show that among all sectors indicating a 
significant trend, there is a significant skew toward coral cover decline around the islands during 
the period 2005–2016. The 13 sectors exhibiting significant linear decline make up over 20% of 
the 63 sectors state-wide, and over 75% of those 17 sectors showing any significant, long-term 
trend. 

Spatial Sectors for Broader Inference across Data Sets 
The identified sectors not only provide a framework for analyzing our benthic data, as shown 
with our mixed model exploration, but they also provide a footprint over which to “cut” datasets 
of potenial drivers or correlates to reef ecological processes which can be used to explore 
possible causes and effects of the observed benthic patterns. Specifically, we will attempt to 
correlate patterns of water quality, thermal stress, etc., as well as patterns in the fish communities 
at these spatial scales which are more likely to reveal ecological dynamics.  

Other Downscaling Options to Explore 
Other protocols for downscaling our datasets present both promise and limits that may 
complement the method outlined here. Future work will explore patterns of gridding and 
interpolation across multiple spatial scales, with an evaluation that allows the data to highlight 
optimal or interesting scales. By using these complementary methods in a portfolio of analyses, 
we can maximize our robust conclusions and minimize potential for errors in downscaling these 
data. 

Potential Confounds & Caveats 
While the method shows promise, its use also presents potential pitfalls for robust inference of 
temporal trends. In this kind of downscaling exercise, we must be clear with ourselves and our 
intended audience that we are using survey data at a scale finer than that the survey effort was 
designed to address. Any such effort will present risks and problems and will require a skeptical 
eye when viewing results. 
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Despite the many potential sources of error presented in our methods section, arguably, the 
biggest are having adequate, random, and well-balanced representation across space, time, and 
stratified variables within a sector. Specifically, when applying this methodology, it is important 
to take care of (1) non-random sampling in downscaled sectors, (2) balanced sampling across 
survey years, and (3) the limitations of mixed model random effects to control for both variation 
among methods and stratification. In the methods section, we detailed our strategies for 
managing each of these issues and empirically demonstrate a technique to test for non-random 
sampling. We will further explore best practices to control for these potential sources of error as 
we move to operationalize these methods and present more robust trends. 

Portfolio of Tools Needed for Resilience-Based Management 
In light of our critical need to generate robust information at the spatial scales over which 
resilience-supporting processes are occurring, this portfolio of techniques presents the promise to 
make the most of our existing datasets. Additionally, it provides a strong foundation for 
revisiting our statistical designs to supply the science necessary to adaptively support resilience-
based management into the future. 
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Appendix A: Clustering Process Plots By Island 

Hawaiʻi Island: Clustering Process Plots 

 

Figure A 1: Voronoi tessellation visualization, Hawaiʻi Island. 
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Figure A 2: Hierarchical spatial clusters. 
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Figure A 3: How many cuts? Hawaiʻi Island. 
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Figure A 4: Minimum spanning tree with highlighted clusters, Hawaiʻi Island. 
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Maui: Clustering Process Plots 

 

Figure A 5: Voronoi tessellation visualization, Maui. 



41 

 

Figure A 6: Hierarchical spatial clusters, Maui. 
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Figure A 7: How many cuts? Maui. 
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Figure A 8: Minimum spanning tree with highlighted clusters, Maui. 

Lanaʻi: Clustering Process Plots 
See body of document. 
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Molokaʻi: Clustering Process Plots 

 

Figure A 9: Voronoi tessellation visualization, Molokaʻi. 
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Figure A 10: Hierarchical Spatial Clusters, Molokaʻi. 
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Figure A 11: How many cuts? Molokaʻi. 
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Figure A 12: Minimum spanning tree with highlighted clusters, Molokaʻi. 
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Oʻahu: Clustering Process Plots 

 

Figure A 13: Voronoi tessellation visualization, Oʻahu. 
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Figure A 14: Hierarchical Spatial Clusters, Oʻahu. 
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Figure A 15: How many cuts? Oʻahu. 
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Figure A 16: Minimum spanning tree with highlighted clusters, Oʻahu. 
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Kauaʻi: Clustering Process Plots 

 

Figure A 17: Voronoi tessellation visualization, Kauaʻi. 
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Figure A 18: Hierarchical Spatial Clusters, Kauaʻi. 
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Figure A 19: How many cuts? Kauaʻi. 
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Figure A 20: Minimum spanning tree with highlighted clusters, Kauaʻi. 
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Niʻihau: Clustering Process Plots 

 

Figure A 21: Voronoi tessellation visualization, Niʻihau. 
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Figure A 22: Hierarchical Spatial Clusters, Niʻihau. 
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Figure A 23: How many cuts? Niʻihau. 
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Figure A 24: Minimum spanning tree with highlighted clusters, Niʻihau. 
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